metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

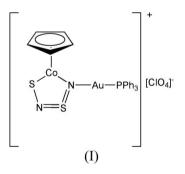
Alexandra M. Z. Slawin and J. Derek Woollins*

Department of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland

Correspondence e-mail: jdw3@st-and.ac.uk

Key indicators

Single-crystal X-ray study T = 133 K Mean σ (C–C) = 0.007 Å R factor = 0.030 wR factor = 0.054 Data-to-parameter ratio = 14.9


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

$(1\eta^5$ -Cyclopentadienyl)(μ -disulfur dinitrido)(triphenylphosphino- $2\kappa P$)cobalt(II)gold(I) perchlorate

The title compound, $[{Au(C_{18}H_{15}P)}Co(C_5H_5)(N_2S_2)]ClO_4$, has a planar CoS_2N_2 ring and a close-to-linear N-Au-Pangle $[176.54 (11)^{\circ}]$. Received 22 May 2006 Accepted 22 June 2006

Comment

The disulfur dinitride dianion is not known as a simple species but can be isolated in metal complexes (Kelly & Woollins, 1986; Jones et al., 1985a,b; Bates et al., 1986). These complexes may be protonated at the metal-coordinated N (Jones et al., 1986) and we have previously commented on the structural consequences of this protonation (Jones et al., 1987, 1988). Recently, we developed a new route to disulfur dinitrido complexes (Aucott et al., 2002) and we examined the metallation of IrS_2N_2 rings using the AuPR₃ cation as a species which is isolobal with a proton (Aucott et al., 2003). A comparison of metallacycle bond lengths for $[(\eta^5 C_5Me_5)Ir(S_2N_2)$] and $[(C_5Me_5)_2Ir_2(S_2N_2)Cl(PPh_3)][PF_6]$ indicates that metallation appears to change the IrS₂N₂ bond lengths and angles in a similar fashion to protonation: both enlarge the M-S2, N1-S1 and N2-S2 distances. We have also recently carried out detailed studies of CpCoS₂N₂ (Van Droogenbroeck et al., 2005). This led us to synthesize the title compound, (I), in order to allow us to investigate the effects of metallation on the CoS₂N₂ ring.

Compound (I) (Fig. 1) has a planar CoS_2N_2 ring and a closeto-linear N-Au-P angle [176.54 (11) Å]. Compared with the non-metallated parent, $CpCoS_2N_2$ (Van Droogenbroeck *et al.*, 2005), we note that (I) has statistically invariant Co-N, Co-S and S2-N2 distances, whilst the N1-S1 distance is longer in (I) than in the parent compound [1.599 (4) *versus* 1.556 (1) Å] and the S1-N2 distance is slightly shorter in (I) than in the parent molecule [1.580 (4) *versus* 1.597 (2) Å]. Within the CoS_2N_2 ring, it is noticeable that metallation results in an almost perfect trigonal Co-N-S internal angle [120.1 (2)° in (I) *versus* 118.32 (8)° in the parent compound]. In general, all internal angles in the CoS_2N_2 ring in (I) are closer to the idealized tetrahedral values at S and trigonal values at N

© 2006 International Union of Crystallography All rights reserved compared with the parent molecule. This work illustrates the difficulties in rationalizing bond lengths in S-N compounds and the continuing need for structural work in this area.

Experimental

Triphenylphosphinogold(disulfur dinitrido)(cyclopentadienyl)cobalt(II) perchlorate was prepared as described in the literature (Aucott et al., 2003) and was crystallized by vapour diffusion of diethyl ether into a dichloromethane solution, to give small darkreddish-violet plates.

Crystal data

 $V = 2591.2 (11) \text{ Å}^3$ $[AuCo(C_5H_5)(N_2N_2)(C_{18}H_{15}P)]$ - ClO_4 Z = 4 $M_r = 774.85$ $D_r = 1.986 \text{ Mg m}^{-3}$ Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation $\mu = 6.65 \text{ mm}^{-1}$ a = 14.646 (3) Å b = 14.186 (3) Å T = 133 (2) K c = 13.377 (3) Å Block, red-violet $\beta = 111.20 \ (3)^{\circ}$

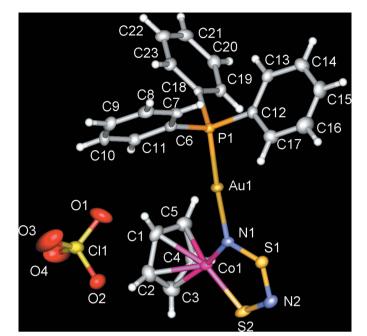
Data collection

Rigaku SCXmini diffractometer ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.203, \ T_{\max} = 0.274$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0176P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.030$	+ 3.2524P]
$wR(F^2) = 0.054$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.007$
4718 reflections	$\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$
317 parameters	$\Delta \rho_{\rm min} = -0.77 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

All H atoms were included in calculated positions and refined as riding, with C-H = 0.95 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.


Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CrystalStructure (Rigaku/MSC, 2004); software used to prepare material for publication: CrystalStructure.

References

Aucott, S. M., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z. & Woollins, J. D. (2003). New J. Chem. 27, 1466-1469.

 $0.26 \times 0.25 \times 0.20 \ \mathrm{mm}$

15021 measured reflections 4718 independent reflections 3953 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.048$ $\theta_{\rm max} = 25.4^{\circ}$

Figure 1

The structure and atom-labelling scheme for (I), with displacement ellipsoids drawn at the 50% probability level.

- Aucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2002). Can. J. Chem. 80, 1481-1487.
- Bates, P. A., Hursthouse, M. B., Kelly, P. F. & Woollins, J. D. (1986). J. Chem. Soc. Dalton Trans. pp. 2367-2370.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Jones, R., Kelly, P. F., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1986). J. Chem. Soc. Chem. Commun. pp. 711-713.
- Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985a). J. Chem. Soc. Chem. Commun. pp. 1325-1326.
- Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985b). Polyhedron, 4, 1947-1950.
- Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1988). J. Chem. Soc. Dalton Trans. pp. 803-807.
- Jones, R., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1987). J. Chem. Soc. Dalton Trans. pp. 907-914.
- Kelly, P. F. & Woollins, J. D. (1986). Polyhedron, 5, 607-632.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Matsubara, Akishima, Tokyo 196-8666, Japan.
- Rigaku (2006). SCXmini Benchtop Crystallography System Software. Version 1.0. Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Van Droogenbroeck, J., Van Alsenoy, C., Aucott, S. M., Woollins, J. D., Hunter, A. D. & Blockhuys, F. (2005). Organometallics, 24, 1004-1011.